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ABSTRACT

The translational equivariant nature of CNN is a reason for its great success in
the field of computer vision. However, networks do not enjoy more general
equivariance properties such as rotation or scaling. This limits the generalization
performance of the network. In this paper, we devise a method that provides
networks with equivariance with respect to translation, rotation, and scaling si-
multaneously. We define a convolution-like operation and ensure equivariance
based on our proposed scalable Fourier-Argand representation. The method has
similar efficiency as a traditional network and hardly introduces any additional
learnable parameters, since it does not face the computational issue often occurs in
group-convolution operator. We verified the quality of our approach in the image
classification task, demonstrating the robustness and the generalization ability to
both scaled and rotated inputs.

1 INTRODUCTION

The great success of network architectures can be attributed to large datasets and large number of
parameters, making it possible to “remember” more information. On the contrary, humans can learn
new concepts with very little data, and are able to generalize this knowledge. Due to a lack of
modelization of geometric deformations, networks prefer to “remember” all the data through filter
parameters instead of “learning” a full generalization ability. For example, in the classification task,
networks trained with datasets with specific object size will make the test fails when using the same
object but with a size that does not appear in the training set. The ability to factor out transformations,
such as rotation or scaling, in the learning process remains to be addressed. It is indeed quite frequent
to deal with images in which objects have a different orientation and scale than in the training set, for
instance, as a result of distance and orientation change of the camera.

To mitigate this issue, data augmentation before training (Krizhevsky et al.l 2012)) is quite common.
However, this leads to a substantially larger dataset and makes training more complicated. Moreover,
this strategy tends to learn a group of duplicates of almost the same filters, which usually requires
more learnable parameters to achieve competitive performance. A visualization of the weights of
the first layer (Zeiler & Fergus} 2014) points out that many filters are similar but rotated and scaled
versions of a similar prototype, which results in significantly more redundancy.

The concept of equivariance was brought to solve this issue, which can be roughly described as
follows: If the input undergoes a particular geometric transformation, the output feature from
the network (with randomly initialized weights) should exhibit a similarly predictable geometric
transformation. Should a network satisfy equivariance to scalings and rotations, training it with only
one size and orientation would naturally generalize its performance to all sizes and orientations.

To achieve this property, methods that use group convolution have dominated this field. An over-
simplified interpretation of a typical group convolution method is as follow: Features are convolved
with dilated filters of the same template to obtain multi-channel features. And the distortion of the
input features then corresponds to the cycle shift between channels. For example, equivariant CNNs
on truncated directions (Cohen & Welling, 2016} [Zhou et al., 2017)) use several directional filters
to obtain equivariance within a discrete group. Further works generalized the rotation equivariance
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to continuous group, with the steerable filters (Weiler et al., 2018; |Cohen et al., [2019), B-spline
interpolation (Bekkers}, [2020) or Lie Group Theory (Bekkers| [2020; [Finzi1 et al., [2020). A similar
path to scaling equivariance is explored, though scaling is no longer intrinsically periodic. Deep
scale space (Worrall & Welling} 2019) defined a semi-symmetry group to roughly obtain the scale
equivariance, while Sosnovik et al.|(2020) applied steerable CNNs on scaling. However, integrating
equivariance to rotations and scalings at the same time results in a bigger group (e.g., a rotation group
with M points and a scaling group with N points results in M x N points for the joint rotation and
scaling group), making the task more difficult. Furthermore, certain ”weight-sharing” techniques
based on group convolution are computationally and memory storage intensive.

Despite the difficulties, empowering the model with
equivariance of rotation and scaling together can be
very beneficial. For example, in object detection, the
distance changes between the camera and the object,
or the random rotations of the object, can largely
influence the method’s accuracy.

In this paper, we aim to propose a CNNs that is con- N
tinuously equivariant with rotation and scaling. Such *,
work will fill a void in the area of equivariant. To P
achieve this, we provide a theory and analysis to -

guarantee that the network preserves the inherent
equivariance property. Based on this, we propose
a Scale and Rotation Equivariant Network (SREN)
architecture. The method avoids the abovementioned
limitations and does not sizably increase computa-
tional complexity. Specifically, We first designed
a scalable Fourier-Argand representation. The ex-
pression of the basis makes it possible to operate the
angle and scale in one shot. Based on this, we pro-
pose a new convolution-like operator that is slightly
different while functionally similar to the traditional
convolution. Furthermore, we show that the computational complexity is similar to convolution, so
this method can easily replace the typical network structure. Finally, the method we designed can
model rotation and scale scaling. Our model can achieve consistent results when tested with datasets
with different transformations (such as rotation and scaling).
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Figure 1: Sim(2) Equivariance property visu-
alization: Our SREN method can inherently
preserve the structure information of the input.
Therefore, for the training of an object with
a certain shape, our method can handle all
the distorted(rotate, scaling, and translation)
objects without further training.

The main contributions in this paper are summarized as follows:

e We propose the scalable Fourier-Argand representation. This representation allows for achieving
the similarity equivariance property.

e We propose the SimConv operator, together with the scalable Fourier-Argand filter, formed as the
Scale Rotation Equivariant Network (SREN) architecture, which is an equivariant network for
rotation and scaling.

e The method is very different from the group-convolutional neural networks. This provides a new
possible path to solve the problem for the community and is not limited to the idea of group
convolution.

2 RELATED WORK

Group convolution Unlike the previous methods, which can achieve equivariance only in one
aspect, our goal is to ensure rotation and scaling equivariant in a unique network. A possible direction
is the application of group theory to achieve equivariance. |(Cohen & Welling| (2016) introduced
group convolution and enforced equivariance to small and discrete groups of transformation, i.e.,
rotations by multiples of 90 degrees. Subsequent works aim at generalizing the equivariantZhou et al.
(2017) and also focus on continuous group coupled with the idea of steerable filters(Cohen & Welling|
2017). To achieve this purpose, Lie group theory, such as LieConv citepfinzi2020generalizing, is also
presented. These studies allow for precise equivariance, but only for compact groups. In contrast to
the rotating group, the scaling group is non-compact. And methods usually treat it as a semi-group
and approximately achieve the truncated scaling equivariance. TridentNet (Li et al., [2019) gets
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scale invariance by sharing weights among kernels with different dilation rates. Scale-space theory
(Lindeberg, |2013)) is also bring out by Worrall & Welling| (2019) consider moving band-limits caused
by rescaling in achieving semi-group equivariance. |Bekkers|(2020) generate the G-CNNss for arbitrary
Lie groups by B-spline basis functions. With different settings, it can achieve scale or rotation
equivariance. SiamSE(Sosnovik et al., 2021c)) equip the Siamese network with additional built-in
scale equivariance. Although Sosnovik et al.|(2021bga) replacing weight sharing scheme with dilated
filters can parallel the process, and thus O(1) in terms of time, the overall computational load is still
increased concerning the group size. Beyond all these methods, expanding the group to a larger space
can increase the overhead computation.

Steerable filters Works with steerable filters are also used to achieve equivariance. The underlying
insight is to use different linear combinations of fixed basis to represent filters of different sizes or
rotation angles. H-Net (Worrall et al., 2017) uses complex circular harmonics while SESN (Sosnovikl
et al) 2020) uses the Hermite polynomials as filter bases to achieve equivariance. This is a bit
related to our method. However, due to the lack of a proper existing basis in the image processing
field, this path to achieving rotation-scaling equivariant is also difficult. Other works improved the
equivariant on different aspects. Polar transformer networks (Esteves et al.,|2018)) generalizes group-
equivariance to rotation and dilation. Attentive group convolutions (Romero et al., 2020) Use the
attention mechanism to generalize the group convolution. Some other techniques, for example, |Shen
et al.| (2020) propose using the partial differential operator to maintain the equivariance. [Jenner &
Weiler| (2022) use the partial differential operators (PDOs) to design the equivariant CNNs effectively.
Gao et al.|(2022) presents a roto-scale-translation equivariant CNN, but it expands filters of the
G-CNN in the scale dimension with a truncated interval.

Differences between related works and ours. Unlike the previous methods our goal is to ensure
continuous rotation and scaling equivariant in a unique network. However, methods that are based on
modifying the filters used in the neural network to achieve some form of equivariance, require more
parameters to learn and are computationally more expensive. Instead, we propose using a scalable
and steerable filter representation (scalable Fourier-Argand) to modify the convolution operator
(SimConv) so that it embodies scale, rotation, and shift equivariance. This transformation does not
introduce new learnable parameters. Thus, we can then achieve the rotation and scale equivariance
efficiently that none of the other methods enjoy.

3 PRELIMINARIES AND NOTATION

This section clarifies the notations about the sim(2) transformation and the convolution that is often
mentioned later. The property of equivariant and invariant are also formulated explicitly, which is
derived from our proposed method.

3.1 SiM(2) TRANSFORMATION

In Euclidean geometry, two objects can be transformed into each other by the similarity transformation
if they share the same shape. This similarity is critical in instance-level computer vision, as objects
do not change with scale, translation, and rotation transformations. This motivates us to study the
similarity equivariant. Let’s consider the Sim(2) group that the invertible translation matrix is as
follows,

T _IRT
T=s [IB 85_1} t] sand T 1=s"1 [13 2} € Sim(2) c R3*3 (1)

where R = [j‘;ﬂf’e ;gif)} € R?*2 denotes the rotation matrix, t € R? is a translation vector and
s € R is the scale factor. In this way, rotation (by 6 angles) , scaling (by s times) and translation
(by t pixels) are integrated in one matrix and can written as the matrix multiplication of three
shape-preserving matrix, i.e., T = A;Y{Ry. Now let’s consider a spatial index on 2D image plane
T = [x1,72)" € R?, we extend its domain to triples as x = [#,1] T € R3. Then for an input signal
f, we define a linear transformation L : Lo(X) — Lo(X) that transform feature maps f € Lo (X)

on some space X, written as,

Lr[f](x) = f(T 'x) )
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The left-hand side can be regarded as a linear transformation Lt acting on a set of feature maps
f, and the right-hand side can be interpreted as finding the value of the feature map f at the point
T~ 'x. Additionally, we have L[| = L(a,v,r,)[] = La.[Ly,[Lr,[]]]. When considering the
transformation we have,

AT =f([s""(RE+16)7,1]7) 3)

This corresponds to a rotation transformation followed by a translation and scaling.

3.2 FORMULATION OF CONVOLUTION

Let’s consider a stack of two-dimensional features as a function f(-) = {f.()}¥; :RZ2 x 1 — RV,
where N is the number of the channel. Similarly, a filter bank contains M elements in convolutional
layer can be formalized as ¢ = {1;}}L,, where each filter with N channels can be written as
Ve = {Yrc N, and ¥y : R? x 1 — RY is a vector valued output filter. Then, for a continuous
input with N channels, we regard the spatial cross-correlation between the input and the continuous
filter bank ¥ as an operator ®[-] = [ x ¢] : RY — RM  written as follow,

DIfI(x) = [f * l(x —4}:/1; ) r(E)dE}L, )

Without loss of generality, we can set N = M = 1 and simplify the above formula with the following
formula,

B[f)(x) = [f  ¢l(x /fx—t 5)

To clarify, although t is three dimension vector, this integral is still a double integral (along the first
and second dimensions), the same as the regular convolution. Since the last dimension of t is only
a placeholder. We use this simplified formula in the remaining paper to make the deduction more
readable.

3.3 EQUIVARIANCE AND INVARIANCE PROPERTY

Definition 3.1 (Equivariance). Given an operator ® : Lo(N) — Lo(M), the operator ® is equivari-

ant to the transform L if for any x € R we can find a predictable transform L, such that the
equation below holds.

O[Lr(fll(x) = Lr[®[f]](x) (6)

If Lt = Ly, we can also say that these two operators are commutable. This equivariance property
provides structure-preserving properties for the network.

Definition 3.2 (Invariance). Given an operator ® : Ly(N) — Lo(M), the operator ® is invariant to
the transform Ly if for any x € Rt the equation below holds.

O[Lr[f]I(x) = @[f](x) )

This paper aims to design a convolution-like operation that is similar in function to convolution
without lifting the intermediate variable size of the network (This is common in group methods.), as
well as satisfies the equivariance or invariance property for any similar transform.

4 METHOD

This section discussed the possibility of making the traditional convolutional neural network to be
equivariance in rotation, scale, and translation simultaneously. The underlying intuition behind the
method is: we first obtain the local scale and orientation of the image. Then, this local information is
used to adapt the scale and direction of the filter used for the convolution. Moreover, this (image-
dependent) spatially-varying convolution has an efficient implementation.
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Figure 2: An overview of SREN: The architecture consists of multiple SimBlocks. In each block, we
use the proposed scalable Fourier-Argand filter (see Section[4.T)) to extract the geometry information
M (x). We then combine this indicator with our similarity convolution (see Section structure to
make the network similarity equivariant. We add a head layer lastly to convert equivariant output to
the invariant output (see Section [4.3)).

4.1 SCALABLE FOURIER-ARGAND REPRESENTATION

We first proposed a representation that we called the scalable Fourier-Argand Representation. The
insight of designing this exact and steerable representation is that we can use this representation to
retrieve the local geometric information and use it as a covariance indicator in Equation (I2)) for
further usage. We first define scalable Fourier-Argand Representation as follows,

Definition 4.1 (The scalable Fourier-Argand representation). Consider a square-integrable function h,
and express it as h(r, ) in polar coordinates. We propose its scalable Fourier Argand representation
as the following series form,

2m1
h(r, 0) = Z <hk17k27"mk1 exp (z(k10+ kQM))) = Z Hi, ke, (7’,9) ®)

k1,k2€Z k1,k2€Z

Where 7 denotes the set of all integers. One has flexibility in choosing any my, as a constant value.
The function has limited support that (r,0) € [0, 27[x [a, b[. In reality, k1, ko can be truncated for a
subset of integers and approximate h.

Proposition 4.1. Let hy, , : Z> — C as the coefficient of each item, and we can compute it as
follows,

1 Inb 1 27 27T,O
- - p ik — iy P
Roy s It /lna 5 /0 h(e”,0) exp ( ik10 — ik b/ pm) dfdp )

The proof of this can be found in Appendix |Al This formula can represent the filter as a composition
of elementary feature basis. The part about 6 can be seen as the Fourier series of filters on the Argand
plane, which is inspired by Zhao & Blu| (2020). The filter itself is in relation to have a connection
with the harmonic filtetWorrall et al.| (2017). For the scaling part, We use the logarithmic method to
make the scaling of the size a linear shift. We also restrict the support of the function as a plane that
radius ranges in [a, b], where @ — 0T. In practice, we set mj, = —1 that acts like a window function,
which ensures that the function can vanish at infinity. The above explains why we call it the scalable
Fourier-Argand representation.

One benefit of the expression we propose is that its basis functions are steerable for rotation and
scalable for scaling. Specifically, consider the transformation matrix T = A YR, that contains
only rotation and scaling, we have,

. . 2mlnr/s —1\m
Dl ) (1:0) = s - exp(ika (0 = @)+ iy ) - 7y
= Hyy (1, 0) - expl(—ikya — iy 2 g 1
= Hp, 1, (1, exp(—ikia — 1 21nb/a s

This equation holds for any « € [0, 27) and s € (a, b). We can easily verify the following proposition,

Proposition 4.2. For a continuous filter h € R? that can be decomposed by a set of basis, let
T = A;YoR,, as a transformation matrix. Then the transformed filter of h, noted as Lr[h], can
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still be represented by the same basis, with a steerable linear combination:

Ly[h)(r,0) = > Lr[Hy, £,)(r,0)

ke (11)
. o 2wlns., _,
= kzk Hy, gy (r,0) - (exp(—zkla — iko b/ )s m’“l)
1,~2

With this property, we can fix the basis Hy, 1, and estimate the filter h for rotation and scaling by
using different linear combinations. Furthermore, if we want to convolve the input signal f with
the filter h and its various Lr[h], we can pre-convolve the image with the basis of the original
filter Hy,, 1,. Besides, the normalized cross-correlation is a more robust substitution of traditional
convolution, denoted as %. This allows us to obtain the intermediate variable fy, 1, by the following
formula,

[f * Hkl,kz](x) - :ui(x),UJHkl,kz

Ui(X)UHkl,kQ

Jrr ko (%) = [f * Hiy 1, ) (%) = (12)
Here = is the traditional convolution, u, and ¢ are the mean and variance of the basis filters or signal.
With these signal basis, we can then obtain the optimal orientation and scale by calculating the argmax
of the combination of basis, written as follows,

K
[Af(X),Ff(X)]:arg{rAla>§ > fk1,k2(x)'ck1,k2(/\a7):argr{yla;\XC%AF (13)
Y )
ki, ko=—K

Where ¢y, 1, (X, 7) = exp(—iki1y — iks Tig70

and F are vectors of all possible f, x, and cg, k, Af(z),Ts(x) can be understood as the projection
of signal f for the orientation and scale aspect. These two indicators meet the following properties,

JA™™ is a coefficient that only relys on A and 7. ¢ »

Lemma 4.1. Let T = A, YRy, as a similarity transformation. Then for a input image [ and its
distorted version Lr[f](x), for any position x, we can have a relationship of this pair of images by
following property,

Aprip(x) = Ap(T7%) s

(14)
Trrip(x) =TT %) +

The proof can be found in Appendix [B] This is the condition that we achieved and applied later in
Section 421

4.2 SIMILARITY CONVOLUTION

We propose the similarity convolution (SimConv) as an alternative to traditional convolution. We first
list the feature of SimConv that we expect as follows: 1). Theoretically, it should have equivariance
properties of rotation, scale, and translation. 2). It should be a convolution-like operation, containing
some learnable parameters and extracting image features by “blending” one function with another.
3). Its computational complexity should be close to traditional convolution. Therefore, unlike group
convolution, it does not face the problem of computational disaster when extending the group size.
These criteria drive us design the similarity convolution as follows,

Definition 4.2 (Similarity convolution). The similarity convolution between the input signal f and
the filter o is defined as

[ ®gl(x) = /R F(x+ My (x)t)p(t)dt = B[/](x) (1)

where M ¢ (x) is defined as following pixel-wise matrix,
Mf(x) = A(Af(x))R(pf(x)) € Sim(2) (16)

This SimConv has a convolution-like structure between feature f and the learnable filter . This
is clear when we do variable substitude with t = M;l (x)t. And it can degenerate to traditional

convolution when setting M ;(x) to Identity matrix for all . We note this SimConv as an operator
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O[] =[®¢] : RY — RM where we set M = N = 1 for easier read. This newly defined
convolution is, in fact, equivariant for rotation, scaling, and translation. We verify this property below.

Considering M f(x) in Equation and combined with the condition of Equation , we can
easily prove that

1 1
M5 ()T™" = A, 0 Ry »T
= A(n,(1-10) AR (1-1x) Ra T} (17)
= A(ry(m-10)R(r (1-1%)) = My (T %)

oy

This leads to the following summarized condition: T = M | (%) - My (T7'x) ¥x € R? x L.

If we apply a similarity transformation L that rotates the signal by a degree centered at ¢, as well as
scaling by s, to the signal f following Equation (2)), then for signals after convolution, we have

O[Lr[f]I(x) = [Lx[f] @ ¢](x) = /RLT[f] (% + ML (x)t)p(t)db
= / FIT7H (3 + Mpy g (X)t)) o (t)dt = / FT7h% 4+ T My (x)t)p(t)dt
R R

(18)
Besides, the commutator operator of the above can similarly deduct as,

Le[®[f])(x) = Lr[lf ® ¢l (x) = L] /R £ (% + My (x)t)(t)dt]

=/ f(T‘1X+Mf(T‘1X)t)<p(t)dt=/ FT7h% + T M (x)t)(t)dt
R R

(19)
Replace the second T in Equation (I9), and compare with Equation (I8)), we can conclude that

O[Lr([flI(x) = Lr[®[f]](x) (20)

This shows that for the input signal f, if we apply the similarity transform and then apply the SimConv,
it is equivalent to first applying the SimConv and then the transform. So with scalable Fourier Argand
representation, the proposed Similarity Convolution satisfies the equivalence property. Moreover, if
each layer in the network satisfies this property, then the transformation can be passed from the first
layer to the last layer, which can be expressed as the following formula,

fn(x) = [Lr[fol ® o ® ... ® pn](x)
= [Lr[fo®po ® ... ® pn]](x)

Moreover, there are few choices to convert the equivariant features into the invariant features,
formulated as P o Lt = P. One option is to add an adaptive max pooling layer at the end of the
network. Let P[-] = torch.nn.AdaptiveMaxPool2d(1) as a function that takes the maximum response
over the entire spatial domain. Since the maximum value won’t be affected by the position distortion
of the feature, the output is invariant. And from Equation we have,

P[o[Lr[f]]i(x) = P[Lr[®[f]]I(x) = P[®[f]](x) (22)

This means the transformation matrix T will not influence the output, which can be beneficial in
tasks such as classification.

2L

4.3 DISCRETIZATION METHOD

Although the continuous formulation in the previous section is necessary to go, from the intuitive
approach (find scale + orientation, then filter accordingly), to the efficiently implementable formula-
tion (Equation (T4)) through a change of variables in an integral, the digital images or feature maps
are usually discrete data aligned on the mesh grid. Therefore, we detailed the discretization of the
integral and approximation implementation. We rewrite Equation (I5)) in discrete form as follows,

B7)() = [ @ ¢lx) = - 3 Flx+ My (0)e(t) 23)

teR
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Where R is the support of . Without loss of generality, take 3 x 3 convolution as an example,
then R = {(ts,ty, 1)T|ts,t, € {~1,0,1}}. n is the number of the elements of the set R. Let
vt = X + My (x)t. Generally, this is a fractional location index. So estimating this value and its
gradient becomes a problem. Here we approximate f(y¢) using the bilinear interpolation technique,
written as, f(yt) = Y., G(y¢, m) f(m)Where m = (mq,mo,1)7 € Z3. G is bilinear interpolation
kernel and its formula is G(m,n) = g(my,n1)g(mae, ng), where g(a, b) = maz(0,1 — |a — b|). So
the similarity convolution becomes

BUA16) = [f @ el(x) = = 3 3 Gl m) f(m)o(t) @)

teER m

With this implementation, we also make the similarity convolution differentiable. The gradient of the
input is written as,

9P[fI(x) _ % ¥ %ﬂm)w(t) (25)

ox
teR m

Here G is a differentiable function, and since it is non-zero only when m aligns on the grid of v, it
does not require too much computation.

5 EXPERIMENTS

5.1 CHARACTER RECOGNITION TASK

Dataset. MNIST-ROT-12K DATASET (Larochelle et al., [2007) is usually used to validate the
rotation equivariant algorithms. Yet this dataset is insufficient to verify equivariant on both scaling
and rotation. Thus, to better facilitate model comparison, we modify the original MNIST dataset
following a similar path and construct the SRT-MNIST DATASET. Specifically, we first zero-padded
the original dataset to 56 x 56 pixel size. Then we keep training set still and randomly rotate, scaling,
and translate each image by a range of § = [0,27),s = [1,2[ and t = %10 respectively. This
out-of-distribution setting of the test image can sufficiently evaluate the model’s generalization ability.

Experiments setup. We use a

ResNet-18 [He et al) (2016) as the Table 1: Generalization ability test on SRT-MNIST
architecture. For every convolution Methods Type of the test set.
layer, we replace it with our SimCOIlV MNIST R-MNIST S-MNIST SRT-MNIST
while maintaining the same trainable
parameters. Aﬁ layers share the CNNs 99.46 d4.41 73.21 33.56

. SO2)-Conv  99.23 97.18 72.85 70.72
same scalable Four1§r-Argand .ﬁlters. R*-Conv 99 31 3523 9921 392
We use Adam optimizer (Kingmal — gppy 99.12 9691 9848 92.3
& Ba, [2015) with a weight decay

SREN+ 99.42 98.3 99.28 95.1

of 0.01. Weights are initialized by
Xavier (Glorot & Bengio, 2010). The
learning rate is set to 0.01 and is decayed by a factor of 0.1 every 50 epochs. We set the batch size as
128, and stopped the training after 200 epochs. All model parameters are 11.68M, and the FLOPs is
0.12G for an input image with 56 x 56.

Generalization ability study. We conduct the ablation study to verify our method’s equivariance
property on rotation and scaling independently and concurrently. In Table[T} R-MNIST, S-MNIST
means we only apply rotation or scaling to the test dataset. SO(2)-Conv and R*-Conv methods have
the same structure as our proposed SREN but set all the I'f or A to unitary, which is a convenient way
to disable the equivariance property partially. SREN+ indicates our method with a data augmentation
technique randomly rotates for +30 degrees, scaling for [0.8, 1.2] times. We can see that SO(2)-Conv
and R*-Conv achieved equivariance property on rotation or scaling. With the equivariant mechanism,
our SREN algorithm can reach an accuracy rate of over 95% on every dataset, whereas the CNN’s can
only overfit the original dataset with limited generalization ability.

Equivariance error analysis. We numerically validate the quality of equivariance by the equiv-
ariant error to reveal how stable the equivariance property of the method is and the main factor that
affects the stability. We define the equivariant error by measuring the normalized L — 2 distance as
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follows,
Lr|®[f]] — ®[L 2
foror _ IR (01) — BLLw7) o6)
|| Lz [@[f]]I|7
where || - || is the Frobenius norm. The formula is the relative percentage error of the two obtained

features after the input is first convolved, then transformed, and after the input is first distorted and
then convolved. We compare the k-th layer feature with the convolutional network. The result is
shown in Figure 3] It can be seen that the average error is lower than 0.01. This shows that our
network can be equivariant in good quality. Besides, we test a specific case that image is rotated by
90 degrees. In this case, there will not be a discretization problem for rotation, and the equivariance
error can be as small as 1.73 x 1075 and almost negligible. This shows that our method can be
extremely accurate for equivariant without discretization.

5.2 NATURAL IMAGE CLASSIFICATION

Experiments Table 2: The comparison on STL-10 dataset: Our approach is achieved coutinuous
setup. To equivariant on join rotation and scaling.
evaluau? . the Methods R-Equi S-Equi Conti ID Accuracy (%) OOD Accuracy (%)
generalization
ability of our  ResNet16 X X X 82.66 + 0.53 37.63 +1.95
method. we do  RDCF v X X 83.66 £ 0.57 5112 +4.21

. SESN X v v 83.79+£0.24 47.26 £0.63
f}’l‘é’e”?}fﬁs@nzz SDCF X v X 83834041 43.60 + 0.87

RST-CNN v v 4.08 £0.11 31+ 3.62

of the STL-10 x 810520 o8 50
dataset [Coates  SREN v v v 8525+0.61 63.42 + 2.57

et al| (2011).

The labeled subset is an excellent choice to evaluate how efficient the network can use these limited
training samples and how much the network’s generalization ability is when the training set is
small. We evaluate methods by in-distribution testing (ID) that unchange the test dataset, and
out-of-distribution testing that randomly rotates and scales the dataset. The OOD test measures the
ability of a method to handle the never-seen inputs.

We use the ResNet (He et al.l [2016) with 16 layers as our backbone, and use our SimConv layers
to replace all convolutional layers. We trained the network for 1000 epochs with a batch size
of 128. And we use Adam as the optimizer. The initial learning rate is set to 0.1 and adjusted
with a cosine annealing schedule during training. Following|Zhu et al.| (2019)), data augmentation
without scaling and rotation is also applied. We compare our method with Rotation Decomposed
Convolutional Filters network (RDCF) (Cheng et al., 2019), Scale-Equivariant Steerable Networks
(SESN) (Sosnovik et al.L[2020), Scale Decomposed Convolutional Filters network (SDCF) (Zhu et al.|
2019), Roto-Scale-Translation Equivariant CNNs (Gao et al.,[2022)). All methods’ backbone is set
to ResNet (He et al., 2016} with 16 layers to make the model parameters comparable and make the
comparison fair enough.

Results & Discussion. Table [2| demonstrates our Equivariant difference in different layer
main results compared to recent baselines. R-Equi 1.51
and S-Equi indicate whether method achieves equiv-

. . . . . o
ariance property in rotation or sca'hng.. Conti means 1o ConvNet
whether the method achieves equivariance at a con- £ angle T
tinuous scale or rotation. As we can see, our method = >

1 : 2 —%— angle = 5

achieved the highest accuracy among all other ap-  Ze.5;
proaches, especially for the out-of-distribution test. = 173%10-6
This shows that our method has a good generalization

. . . 0.0 ka3 x
ability. Besides, to be noticed that we make a compar- p 1 2 3 a
ison with methods that “partially”” achieve equivariant Network depth

since there are no like-for-like methods (achieving Figure 3: Equivariance error: Our method
rotation and rotation scaling equivariant in the con- shows good equivariant quality with a multi-
tinuous group) to compare. [MacDonald et al|(2022) layer network. The error can reach the 106
is another paper that guarantee the equivariance to level if there is no discretization approxima-
any finite-dimensional Lie group, but the memory tion.

efficiency limits it to scale up to a large network and make an affair comparation. It is not easy to
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achieve this property efficiently, and this paper is one of the few ways to achieve this property. Being
able to achieve this property itself is already another state-of-the-art.

6 CONCLUSION

Although there have been numerous studies on how to achieve rotation and scale equivariant, achieving
continuous equivariant in rotation and scaling is novel, to our knowledge. In this paper, we propose
to develop scalable steerable filters based on the Fourier-Argand representation and to use the local
scale and orientation provided by these filters to empower the convolution operator with local scale
and rotation equivariant: SimConv. Mathematical and experimental analyses are detailed to explain
why it works and to what extent it can achieve the desired property.

10
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A PROOF OF SCALABLE FOURIER ARGAND REPRESENTATION

Definition A.1. Consider a square integrable function h, and express it as h(r,0) in polar coordi-
nates. We propose its Scalable Fourier Argand representation as the following series form,

m 2rlnr
h(r,0) = Z [hkl kot 1 exp(i (k10 + kzlb—lna))] = Z Hiy iy (1,0) (27)
kl,kzez kl,k?QEZ

Where hy, 1, : Z* — C is the coefficient of each item, which can be computed as follows,

Inb 1 27
P 28
Ry key = o b/a /1 h(e?,0) exp(—ik16 — ’Lkg — pm)d@dp (28)

Proof.
We start from Equation (27) and replace the polar coordinate r by an exponential term r = e”, then

p = Inr and we have,

21
B 0) = X o xplome, exp(i(had + ka2 ) 9)
k1,ko€Z

Let’s define a quantity g, x, as follows,

Inb 27
1 2T
] —ik160 — 1 — 30
ky ke = lnb/a/l h(e’, 0) exp(—ik; 1ko pm)dfdp (30)

p
Inb/a

Replace h(e?, #) in Equation with the scalable Fourier-Argand representation in Equation ,
we have,

Inb 21
1
= v k10 — ik déd
Ik ,ks = lnb/a/l / (e?,0) exp(—ik10 — i 21 b/a — pm)dfdp

Inbd 27
1 2wp
h 10+t
S e By (22, s om0 g )
exp(—ik10 — zkg / — pm)df@dp
Inbd 27
)
hiy 1, €xp(pmy, ) exp(it10) exp(ztz )
lnb/a/l té:z (tlzejz btz h In b/a
) . 2mp
exp(—ik10)d0 exp(—iks mbja pm)dp
i [ (o " explpm) expli(ts — kn)0)d0 | expits 2L
- Inb/a )i, f t22 CXPpM, ) eXplitia ! exp 2lnb/a
to€Z \t1€Z
27rp
exp(— zk‘gm—pm)d,o

- 1112/61 /llnb > > (W /27r exp(i(t, — k1)9)d9>

Na 4,€Zt,€Z
. 27mp
t -
expita 5 7o)
(31

13
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2mp

1 /lnb
= Ry, — k1] exp(it exp(—ik dp
Inb/a )i, tZEZtZEZ t1:t20 1] exp 21 b/ 7o) expl(= ’Inb/a )

1 Inb 27Tp
lnb/a /]na tZEZ k’l’t2 eXp( ( 2)1 b/ )

Inb

2mp
= Z hkl to7 77 In b/ [ exp kg)m)dﬂ

to€EZ

= > hi, 1,0tz — ko]

toEZ

(32)

= hkl,kz

The last equation holds since, when to = ko, then,

1 Inb ) 27T,0 1 Inb )
nb/a / exp(i(ts — k2)ln b/a,)dp = / exp(i0)dr =1 (33)

Ina lnb/a Ina

And when ty # ko, then

1 Inb 27Tp 1 Inb 27rp
Inb/a /lna explilte = ko) g 2)de = 1570 /hm exp(ing Ty /q )P =0 )

The holds of Equation (3T)) proves the proposition.

B PROOF OF DISTORTION PROPERTY

Lemma B.1. Let T = S,Y;R,, then for a transformed input Lt |f](x), we can get the following
property,
Apyip(x) = Af(T7'%) s

(35)
I‘LT[f](x) = Ff(Tflx) +a

Proof. Let’s consider f(z) and Lp[f](x) as the original and distroted image. Using the scalable
Fourier Argand basis, we have,

K
[ALT[f] (CIJ), FLT[f] (.’17)] = argax Z LT[f]Iﬂ,kz ($> * Cky ko ()‘7 7)
) 4y ko
K
) 2mIn A
= argmax Z [Lr[f] * Hiy ko) () - exp(—ikyy — tho——— b/ AT
(A7) Ky e — K
(36)

Substitude = by 7'z, we have,

(Lo (T @), Do) (T )]

K orln\ (37)
= Ly [H T 'z). —ikyy — tkg —)AT™
arggl%(kl k;ﬁ}{[f* 71 [Hiy 1, ]| (T ) - exp(—ik1y — iko 1nb/a)
Besides, from Equation (I0) we have,
. 2rlns. _
Lyp[Hy, 1,](1,0) = Hiy gy (1,0) - (exp(—zkla thg ——— b/ )s mkl) (38)

14
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‘We have,
[Arpi)(T72), Drpi (T )]
= 27 In A
= argmax Z [f*LTfl[Hkl,k2H(Tilm).exp(iikl’yiikbm) -
ki ka=—K
- 2rlns
:argfr/i’aw))c Z [f*Hkl,k2-<eXp(ik1a—|—ik2 lnb/a)smkl)](Tla:)
ki ko =—K
) Lo 2mln A, (39)
-exp(—tikiy — zkgm))\
X 27 1In()\/s)
=argmax >0 [ % Hipa(T70) - exp(—iki (7 = @) = iky =y 30 lE) (0 s)
k}l,ktz_ K
X 27 1n()\)
- Hioy 1) (T ) - exp(—iks (7) — iky 2y ()™
g S Hil(T ) (i) — ik TN

(40)

C DETAILS, ANALYSIS, AND VISUALIZATION
C.1 ADDITIONAL STUDIES

Stability We first quantify the deformation stability, and seek to answer in what degree of distor-
tion can the method persist the equivariant (or the generalization ability) compared with original
convolution. To achieve this, we evalue our method on the test dataset that rotated and scaled entirely
by a certain amount. We do this experiment with the MNIST dataset. Figure [ displays the accuracy
decay with different settings. It can be observed that when rotate the image that largely differ from
the training dataset, the CNNs will drop accuracy largely, while our method maintains a consistently
excellent performance. For scale changing test, our method maintain a relatively good capability on a
wide range of scale change. For extremely large scale change, our method have performance drop
due to limited filter spot and sampling approximation.

(a) The scale equivariant comparation (b) The rotation equivariant comparation
1001 @ & ™ A A A A B I T i o SN
. Bep
e, o
o e, = 80 ‘o
Z 80 ‘® z K
8 g 6o LY
g ° g s,
S 70 3
= 5 R . Z 40 . . . "
~@- ConvNet "o, @ ConvNet o, 0007
60| -4~ SREN 4 SREN o.. o
° 20 ®..q. 0"

1.0 1.2 1.4 1.6 1.8 0 25 50 75 100 125 150 175
The scaling factor (times) The rotation angle (degree)

Figure 4: Equivariance Stability: When the entire test set is translated and rotated by a certain scale

or angle, our network can still get good performance, while the ConvNet’s performance will decrease
largely with the change.

C.2 FEATURE VISUALIZATION
Besides numerical experiments, we also visualize the features of the network to verify the equivariance

achieved by our network more intuitively. The visualization result is shown inFigure [5] This
visualization answer the question whether the hidden feature visually looks equivariant with respect
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to rotation and scaling. The parameters are randomly initialized for both CNN and SREN model.
With the compensation view, we can clearly see that our network indeed achieve the equivariant in
rotation and scaling.

Image

Rotated
Image

Our method outputs
similar features

CNNs are not -
equivariant to ——— when inputs are

b~ either rotate b distorted by rotation
nor scaling. and scaling.

Scaled

Image

4
N IRy
Rotated . / N
& Scaled Y /".kl -~ ]
Image 2 S ."q l
R WY o ‘H
- J LT | a4 ]
Features of . . Features of our :
plain CNNs. Compensated view proposed method. Compensated view

Figure 5: Feature Visualization: We visualize the output feature of the CNNs and our SREN in
compensating view. It can be seen that the features of our method do not vary with the transformation
of the object, compared with CNNs.

C.3 ARCHITECTURE AND PIPELINE

The main flow of our algorithm is shown in Figure[2] This method can be applied to a multi-layer
network structure. Assuming that the network contains K blocks (which we named as SimBlock),
where each block contains multiple convolutional layers. And the input signal of the i-th block is
denoted as f;. We first calculate the scalable Fourier Argand feature proposed in Section[d.1] This
allows us to get a spatial-wised matrix My, (x). Then all the SimConv layer (proposed in Section
within the SimBlock share this same scalable Fourier Argand feature. Let’s assume there are N
SimConv layers in each SimBlock. Based on the property of Equation (21)), the output feature of
this block, denoted as f;1, is guaranteed to be an equivariant feature corresponding to the input
image. For the classification task, the invariance property is desired. We pooled the last layer for each
channel, followed by the MLP layer. The final output is then obtained and guaranteed invariant for
any similar transform. The whole process is shown in Algorithm [I]

C.4 STL-10 DATASET COMPARATION

This section compare our method with other related methods with the same backbone. All method
use WideResNet as the backbone with 16 layers and a widen factor as 8. We trained our network
for 1000 epochs with a batch size of 128, we use SGD as the optimizer. The initial learning rate
is set to 0.1 and decreased by a factor of 0.2 after 300 epoch, and the drop rate probability as 0.3.
We ues the data augmentation technique following [Sosnovik et al | (2021a). Table [3]demostrates our
main results compared to recent baselines, such as SICNN (Kanazawa et al., 2014)), DSS (Worrall
& Welling;, 2019), SESN (Sosnovik et al.| [2020), DISCO (Sosnovik et al., 2021a). Our method
obtained a competitive result that is close to the state-of-the-art paper. Besides, we want to highlight
that our method’s computation cost and parameters are similar to the classic convolutional neural
network with the same backbone. This is because the two quantities A and I" can be shared within
different filters. Thus the cost is small compared with the abundance of the convolutional (or our
SimConv) layer. And the complexity of our SimConv operator is similar to the convolutional layer.
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Algorithm 1: Pipeline of our SREN Algorithm

Input: Batch of data {f;},
Output: predicted output value v
fori=1: K levels do
Initialize filter h, calculate its basis Hy, r,;
Take f; as input;
Get [, ko <= [+ Hiy ko
GetI'y,, Ay, < argmax, ) c, \F;
Calculate My < I'y,, Ag;s
for m = 1 : M layers in specific level n do
L Apply M/ to SimConv;
fim+1 < fi ® ©im;
| fir1 < fim
Get the output with a head layer: v < MLP(f)

Table 3: Methods comparation on STL-10 dataset, all methods use the WideResNet as the backbone.

Method | WRN  SiCNN  SI-ConvNet DSS  SS-CNN SESN DISCO SREN
Error | 11.48 11.62 12.48 11.28 25.47 8.51 8.07 8.23

For comparison, the computational cost of DISCO method takes more than 5 times longer and SESN
takes more than 16.5 times longer than classic CNNs, reported in|Sosnovik et al.|(2021a)).
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